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Starting from the dynamic response of a sandwich beam with damping, (which is in free vibration), it is
established a method used to determine the damping factor. We experimentally calculated the stiffness and
damping factor per unit mass for beams with middle layer made of polypropylene honeycomb respectively;
the external layers were made of epoxy resin reinforced with steel fabric.
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The composite plates and bars could be analyzed using
a lot of theories that mostly differ by the inclusions or
neglecting the effects of angular deformation and
respectively, the rotational inertia.

Exact theories rely on a non-linear distribution of shear
stresses along the thickness of the plate or bar. The
inclusion of high order terms implies the inclusion of
supplementary unknowns. Moreover, when fulfilling both
the distribution of shear stresses in thickness is parabolic
and if the limit conditions are accomplished on external
surfaces, it is not necessary a correction factor. Based on
this fact, it was developed a theory [1] (High – order Shear
Deformation Theory – HSDT) where it is assumed that
stresses and strains normal to the median plane are null.
Another theory, in which there are also considered the
stresses normal to the median plane, has also been
developed in [2, 3] by removing a series of contradictions
appearing in previous theories by accepting non linear
factors of shear stresses in thickness; also, they did not
neglect a part of the normal stresses obtained by the loading
of the composite structure.

There have also been made some studies on the damped
vibrations of Euler – Bernoulli and Timoshenko bar. Relevant
to this works are the studies [4-11]. The material was
assumed to be incompressible whereby the same
viscoelastic operators could be both used for the flexural
and shear deformations. This permitted the use of the
normal modes and their orthogonality conditions to solve
this viscoelastic forced vibration problem. It is shown that
if the ratio between the length and thickness of a bar is
higher than ten, the differences between Timoshenko and
Euler-Bernoulli theories for the bending moment, shear
force and the medium fiber deformation are smaller than
five percent (5%). It is shown that, for the first vibration
eigenmodes, the damping influence of the bar section
rotational motion can be neglected. Similar equations and
conclusions for composite materials bars are presented in
[12-13]. In [9], it is analyzed a damped and axially loaded
Timoshenko bar for random transverse load. Only a special

case of damping in the transverse and rotatory motion was
considered which allowed, then, using the orthogonality
conditions of the undamped modes to decouple the modal
equations. In [10], it is obtained the „closed – form” solution,
but for an incomplete differential equation of a simply –
supported bar with external damping.

In [14], it is presented a general modal approach to solve
the linear vibration problem of a uniform Timoshenko bar
with external transverse and rotatory viscous damping and
different viscoelastic damping in the flexural and shear
deformations. With this approach, the bars with boundary
conditions can be as conveniently analyzed as a bar with
simple supports.

Recent applications have shown that honeycomb panels
from polymer, reinforced with fiber, can be used for new
construction or for restoration of existing structures. In [15],
there are studied the vibrations of sandwich structures with
honeycomb which have the core geometry of sinusoidal
type. It was developed a higher order vibration model for
studying the vibrations, made   by energy methods.

In [16], there were studied the free vibrations of the
curved sandwich beams, with flexible core, in different
conditions of temperature. The external surfaces and the
core of the beam were considered as being made of
materials with mechanical properties dependent on
temperature. It was shown that the frequency of free
vibrations of the beams decreases when the temperature
increases.

Experimental part
We built the plates from composite materials with

polypropylene honeycomb core (honeycomb which has
the thickness g with the values 10 mm, 15 mm, and 20
mm). The exterior layers of the plates were made   of
epoxy resin reinforced with steel fabric.

For these plates, we collected six sets of samples with
length equal with L = 400 mm and width equal with
l=40mm  and respectively l= 50 mm.

These were noted as follows:
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-the set of samples 1: l = 40 mm, g = 10 mm;
-the set of samples 2: l = 50 mm, g = 10 mm;
-the set of samples 3: l = 40 mm, g = 15 mm;
-the set of samples 4: l = 50 mm, g = 15 mm;
-the set of samples 5: l = 40 mm, g = 20 mm;
-the set of samples 6: l = 50 mm, g = 20 mm;

We have also considered two variants of bar embedding,
on various lengths, in this way (we will refer to the free
parts of the plates – namely the parts where the
accelerometers are located and where the measurements
will be made):

-Variant I: the free length is 300 mm
-Variant II: the free length is 350 mm
We have chosen these lengths at each bar, to obtain the

ratio between the bar length and thickness bigger than 15
and to be able to apply the Bernoulli theory which is valid in
the case of thin bars. In this case, the free vibration of the
bar is:

where:
- μ is the damping factor, equal with half of the damping

factor per unit mass of the bar;
-νn are the eigenfrequencies;
-Vn(x) are the eigenfunctions, which depend on the

conditions of the bar ends.
The eigenfrequencies are calculated with the relations:

            (1)

where
- I  is the bar length;
- EI  is the bar section stiffness;
- m  is the mass per unit length of the bar;
- Kn  is determined from the bar ends conditions.
Experimental measurements have been made,

recording the free vibrations in two measuring points. The
measuring points (where the accelerometer was placed)
are located at 10 mm (named P1 point), respectively 100
mm (named P2 point) distances, from the free end of the
bar. Each point measurement was made four times. The
data record for a bar of set 6, that has the free length of 300
mm and the measurement made in point P1, is presented
in figure 1.

The processing of this data record and the calculus of
the damping ratio, for a number of five cycles, are presented
in figure 2. In this processing, we have determined half of
the damping factor per unit mass of the bar.

Because we have not observed significant differences
given by the point of measurement, we have made for
each set of bars, the average values of the damping factor
μ (half of the damping factor per unit mass of the bar) for
all the measurements. The experimentally determined
results for mass per length bar unit, the damping factor,
the frequency of the first eigenmode and the bar section
stiffness obtained from relation (1) are presented in table
1.

Fig. 2

Fig.1

Table 1

In table 1, the measuring units are:
-for mass per length bar unit m-(kg / m);
-for the damping factor μ-((Ns/ m)/ kg);
-for the frequency ν-(s-1);
-for the bar section stiffness EI-(Nm2).
We tested the bar samples to bending for stiffness

calculus.
Samples and test device were configured according to

ASTM D790-02, Standard Test Methods for Flexural
Properties of Unreinforced and Reinforced Plastic and
Electrical Insulating Materials. The testing speed has been
calculated according to ASTM D790-02. The specifications
of the test device are:

-the diameter of the support and identor rollers -  25
mm;

-the distance between the support rollers - 2 x 120 mm;
-the width of support and identor rollers   - 50 mm
In figure 3, there are shown the bending device and the

way of the sample breakage.

Fig. 3
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The dependence between the force applied by the
identor roller and the displacement at the middle of the
specimen is presented in figures 4-6.

From the diagrams 4-6, the bars section stiffness are
determined by the force – displacement dependence
interpolation in the linearity area which corresponds to
some displacements up to 2 mm. We have obtained the
next results:

-for set 1: EI = 11.24 Nm2;
-for set 2: EI = 14.38 Nm2;
-for set 3:  EI = 20.30 Nm2;
-for set 4:  EI = 24.29 Nm2 ;
-for set 5:  EI = 32.91 Nm2;
-for set 6:  EI = 42.31 Nm2

Conclusions
The values analysis of damping coefficients   indicates

that these coefficients must be experimentally determined

for each type of material and sample, being difficult to
deduce a quantitative correspondence with the parameters
which  influence the damping, directly or indirectly. The
values of damping coefficients may depend on several
factors such as: sample dimensions, specific mass or the
quantity of material from sample, elastic and damping
properties of component materials.

The sample width can influence the damping coefficient
by the fact that it determines the surface in which the air
friction is acting on the sample. The sample mass or
specific linear mass has an influence on the damping
coefficient by that, for the samples with higher mass and
width, the deformation energy which is stored in the sample
through the initial deformation, is dissipated in a larger
quantity of material. An influence may occur due to the
sample rigidity, explained by the fact that a force initially
applied on the sample produces a less deformation if the
rigidity is higher.

Fig. 4 The dependence between the force
applied by the identor roller and the

displacement at the middle of the sample, for
samples with polypropylene honeycomb core

of 10 mm

Fig. 6 The dependence between the force
applied by the identor roller and the

displacement at the middle of the sample, for
samples with polypropylene honeycomb core

of 20 mm

Fig. 5 The dependence between the force
applied by the identor roller and the

displacement at the middle of the sample, for
samples with polypropylene honeycomb core of

15 mm
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A good damping of vibrations is achieved in the case in
which the composite materials of the external layers have
the damping capacity and elastic properties which are
superior. But the influence of these layers is dependent on
the interaction with the middle layer and, for this reason, it
is difficult to be analytically analyzed.

In addition to these general considerations, we can
distinguish the following conclusions:

-both for damping coefficient per unit mass and as well
for the damping coefficient per unit length of the bar, the
highest values   were obtained for bars with core thickness
equal with  20 mm and the lowest values   were obtained
for bars with core thickness equal with 10 mm; therefore,
the damping coefficient increases at once with the core
thickness of bar;

-we have not observed the significant differences of the
damping coefficient per unit mass of the bar, for the bars
which have the width equal with 40 mm, and, respectively,
for those which have the width equal with 50 mm;

-the damping factor values per bar mass unit decrease
with the bar free length.

The comparison between the bars sections stiffness
calculated from relation (1) and the experimental tests
obtained at the three points bending shows that for the
bars with polypropylene honeycomb core of 10 mm, the
calculated stiffnesses are lower than the measured ones,
and for the bars with polypropylene honeycomb core of 20
mm, the calculated rigidities are higher than the
experimentally obtained ones.

The diagrams analysis that give the dependence
between the force applied by the identor roller and the
displacement at the middle of the specimen, and the
specimens bending tested, shows that the breakage is
suddenly produced in the oposite part of the identor roller
that applies the loading force.
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